Labeltec responde a todas sus dudas sobre RFID
Si su consulta no se encuentra entre las que se ven a continuación, no dude en contactarnos. Estaremos complacidos de evacuar todas sus dudas.
SI!
Muchas empresas en nuestro país ya están utilizando esta tecnología y, de hecho, es más habitual de lo que cualquier persona puede llegar a imaginar. Sin ir más lejos, la mayor parte de los tele peajes a nuestro país utilizan actualmente nuestros tags de RFid.
Pero también existen compañías mejorando sus eficiencias. Laboratorios, empresas de logística, productores agrícolas, tiendas minoristas (textiles, joyerías, etc), centros de salud y muchos otros tipos de organizaciones encuentran un ámbito de aplicación para esta tecnología y obtienen retornos de inversión inimaginables anteriorermente.
NO!
La tecnología puede adaptarse perfectamente a los sistemas de gestión que existen en el mercado.
Esta misma pregunta se realizaba hace más de 25 años cuando las compañía querían abrazar la adopción del código de barras pero no sabían si la infraestructura de software y hardware debía cambiar o no. La situación es idéntica a la de aquel entonces y su respuesta también.
Incluso hoy es mucho más fácil cualquier tipo de integración por las herramientas existentes que no estaban disponibles un par de décadas atrás.
Lo que sí puede suceder es que los usuarios se vean colapsados por la cantidad de de información que entregan los tags de RFid y la forma absolutamente online en la que ésta se presenta.
Por tal razón, se desarrollan aplicaciones autónomas que automatizan la toma de decisiones a partir de una serie de reglas definidas por la compañía. Por ejemplo, “si sucede X hacer Y”. De tal forma, las operaciones rutinarias pueden ser automatizadas y disparar alarmas cuando una situación requiera atención.
Si!
La International Organization for Standarization (ISO) desarrolló diferentes normativas según la aplicación de la tecnología RFid. Por ejemplo, la ISO/IEC 18000-3 es un standard para identificación con tafs pasivos a nivel de item en una cadena de abastecimiento, un ambiente de manufactura, logistica, retail, transporte e identificación de equipaje..
Otro ejemplo también es el standard EPC global utilizado por la organización GS1, que establece las características técnicas de las etiquetas inteligentes y los dispositivos a ser utilizados por cadenas de retail en la identificación de unidades de consumo, unidades logísticas y pallets. La estructura del EPC también permite identificar activos de diferente tipo, productores alrededor del mundo.
El EPC (Electronic Product Code) fue diseñado para otorgarle una identidad única a cualquier objeto. Esta forma de identificación permite el seguimiento en tiempo real de cualquier activo. Se trata de un “número” que se almacena en un chip conectado a una antena que pueden ser ubicados en una etiqueta o tag para luego leerse inalambricamente, mediante diferentes dispositivos de lectura.
Una de las características más interesantes de código EPC es que posibilita asociar a un código de producto, muchísima información variable como fecha de elaboración,, fecha de vencimiento, o datos técnicos como peso, espesor, altura, etc.
La mayor parte de los países asignaron para los sistemas de baja frecuencia el área de los 125 kHz or 134 kHz, mientras que los sistemas de high-frequency utilizan 13.56 MHz
El caso de los sistemas UHF RFID (ultra high frequency) es un poco diferente. Las frecuencias utilizadas para el Electronic Product Code no pusieron de acuerdo a los países para utilizar una sóla área del espectro UHF. Asi, Europa utiliza 868 MHz, Estados Unidos 915 MHz, Japón 916.7-920.9 , Latinoamérica 900 MHz, Brasil xxx Mhz.
Los gobiernos no sólo regulan el área utilizable para los diferentes sistemas sino que también reglamentan la potencia de los lectores con el fin de limitar la intereferencia con otros dispositivos. Actualmente existen soluciones para que los tags puedan ser leídos en sistemas de diferente frecuencia.
Las aplicaciones más comunes son el seguimiento de productos en cadenas de abastecimiento, la identificación de pacientes en centros de salud o la identificación de prendas en cadenas de retail y herramientas de alto valor en quirófanos.
También es muy frecuente su utilización en contenedores reutilizables, como herramienta de seguridad (incluyendo control de acceso a edificios) o como método de pago en espectáculos masivos y/o peajes.
La tecnología RFID puede ser utilizada en cualquier ámbito. Desde la trazabilidad de animales como mascotas o alimentos en cadenas de consumo masivo hasta el accionamiento de dispositivos de riego cuando se detecta cierto nivel de sequedad en el suelo.
Puede sonar a respuesta trillada o “argumento comercial” pero verdaderamente las aplicaciones de la tecnología se encuentran limitadas por la imaginación de los usuarios.
En Argentina son muy pocas las empresas que hemos avanzado decididamente con aplicaciones de vanguardia. Sin dudas, Labeltec es una de la líderes con las aplicaciones más masivas de tags en la Verificación Técnica Vehicular de la provincia de Buenos Aires y en los peajes de Ciudad Autónoma de Buenos Aires y Gran Buenos Aires.
A nivel internacional, es muy fácil encontrar a las marcas líderes en http://rainrfid.org/ que es una organización sin fines de lucro cuya finalidad es contribuir con la adopción de tecnologías para que ” las cosas de todos los días” formen parte de un mundo interconectado.
Microchips in RFID tags can be read-write or read-only. With read-write chips, you can add information to the tag or write over existing information when the tag is within range of a reader, or interrogator. Read-write tags usually have a serial number that can’t be written over. Additional blocks of data can be used to store additional information about the items the tag is attached to. Some read-only microchips have information stored on them during the manufacturing process. The information on such chips can never been changed. Other tags can have a serial number written to it once and then that information can’t be overwritten later.
The read range of passive tags (tags without batteries) depends on many factors: the frequency of operation, the power of the reader, interference from metal objects or other RF devices. In general, low-frequency tags are read from a foot or less. High frequency tags are read from about three feet and UHF tags are read from 10 to 20 feet. Where longer ranges are needed, such as for tracking railway cars, active tags use batteries to boost read ranges to 300 feet or more.
Another problem readers have is reading a lot of chips in the same field. Tag collision occurs when more than one chip reflects back a signal at the same time, confusing the reader. Different vendors have developed different systems for having the tags respond to the reader one at a time. Since they can be read in milliseconds, it appears that all the tags are being read simultaneously.
One problem encountered with RFID is the signal from one reader can interfere with the signal from another where coverage overlaps. This is called reader collision. One way to avoid the problem is to use a technique called time division multiple access, or TDMA. In simple terms, the readers are instructed to read at different times, rather than both trying to read at the same time. This ensures that they don’t interfere with each other. But it means any RFID tag in an area where two readers overlap will be read twice. So the system has to be set up so that if one reader reads a tag another reader does not read it again.
Microchips in RFID tags can be read-write or read-only. With read-write chips, you can add information to the tag or write over existing information when the tag is within range of a reader, or interrogator. Read-write tags usually have a serial number that can’t be written over. Additional blocks of data can be used to store additional information about the items the tag is attached to. Some read-only microchips have information stored on them during the manufacturing process. The information on such chips can never been changed. Other tags can have a serial number written to it once and then that information can’t be overwritten later.
It depends on the vendor and the application, but typically a tag would carry no more than 2KB of data—enough to store some basic information about the item it is on. Companies are now looking at using a simple “license plate” tag that contains only a 96-bit serial number. The simple tags are cheaper to manufacture and are more useful for applications where the tag will be disposed of with the product packaging.
The Electronic Product Code, or RFID, was developed by the Auto-ID Center as a successor to the bar code. It is a numbering scheme that will be used to identify products as they move through the global supply chain.
Active RFID tags have a battery, which is used to run the microchip’s circuitry and to broadcast a signal to a reader (the way a cell phone transmits signals to a base station). Passive tags have no battery. Instead, they draw power from the reader, which sends out electromagnetic waves that induce a current in the tag’s antenna. Semi-passive tags use a battery to run the chip’s circuitry, but communicate by drawing power from the reader. Active and semi-passive tags are useful for tracking high-value goods that need to be scanned over long ranges, such as railway cars on a track, but they cost a dollar or more, making them too expensive to put on low-cost items. Companies are focusing on passive UHF tags, which cost under a 50 cents today in volumes of 1 million tags or more. Their read range isn’t as far — typcially less than 20 feet vs. 100 feet or more for active tags — but they are far less expensive than active tags and can be disposed of with the product packaging.
No. Radio waves bounce off metal and are absorbed by water at ultra-high frequencies. That makes tracking metal products or those with high water content problematic, but good system design and engineering can overcome this shortcoming. Low- and high-frequency tags work better on products with water and metal. In fact, there are applications in which low-frequency RFID tags are actually embedded in metal auto parts to track them.
Most countries have assigned the 125 kHz or 134 kHz area of the radio spectrum for low-frequncy systems, and 13.56 MHz is used around the world for high-frequency systems. But UHF RFID systems have only been around since the mid-1990s and countries have not agreed on a single area of the UHF spectrum for RFID. Europe uses 868 MHz for UHF and the U.S. uses 915 MHz. Until recently, Japan did not allow any use of the UHF spectrum for RFID, but it is looking to open up the 960MHz area for RFID. Many other devices use the UHF spectrum, so it will take years for all governments to agree on a single UHF band for RFID. Government’s also regulate the power of the readers to limit interference with other devices. Some groups, such as the Global Commerce Initiative, are trying to encourage governments to agree on frequencies and output. Tag and reader makers are also trying to develop systems that can work at more than one frequency, to get around the problem.
Different frequencies have different characteristics that make them more useful for different applications. For instance, low-frequency tags are cheaper than ultra high frequency (UHF) tags, use less power and are better able to penetrate non-metallic substances. They are ideal for scanning objects with high-water content, such as fruit, at close range. UHF frequencies typically offer better range and can transfer data faster. But they use more power and are less likely to pass through materials. And because they tend to be more “directed,” they require a clear path between the tag and reader. UHF tags might be better for scanning boxes of goods as they pass through a bay door into a warehouse. It is probably best to work with a consultant, integrator or vendor that can help you choose the right frequency for your application.
Just as your radio tunes in to different frequency to hear different channels, RFID tags and readers have to be tuned to the same frequency to communicate. RFID systems use many different frequencies, but generally the most common are low- (around 125 KHz), high- (13.56 MHz) and ultra-high frequency, or UHF (850-900 MHz). Microwave (2.45 GHz) is also used in some applications. Radio waves behave differently at different frequency, so you have to choose the right frequency for the right application.
Many companies have invested in RFID systems to get the advantages they offer. These investments are usually made in closed-loop systems—that is, when a company is tracking goods that never leave its own control. That’s because all existing RFID systems use proprietary technology, which means that if company A puts an RFID tag on a product, it can’t be read by Company B unless they both use the same RFID system from the same vendor. But most companies don’t have closed-loop systems, and many of the benefits of tracking items come from tracking them as they move from one company to another and even one country to another.
RFID is a proven technology that’s been around since at least the 1970s. Up to now, it’s been too expensive and too limited to be practical for many commercial applications. But if tags can be made cheaply enough, they can solve many of the problems associated with bar codes. Radio waves travel through most non-metallic materials, so they can be embedded in packaging or encased in protective plastic for weather-proofing and greater durability. And tags have microchips that can store a unique serial number for every product manufactured around the world.
Automatic identification, or auto ID for short, is the broad term given to a host of technologies that are used to help machines identify objects. Auto identification is often coupled with automatic data capture. That is, companies want to identify items, capture information about them and somehow get the data into a computer without having employees type it in. The aim of most auto-ID systems is to increase efficiency, reduce data entry errors, and free up staff to perform more value-added functions, such as providing customer service. There are a host of technologies that fall under the auto-ID umbrella. These include bar codes, smart cards, voice recognition, some biometric technologies (retinal scans, for instance), optical character recognition, and radio frequency identification (RFID).
Radio frequency identification, or RFID, is a generic term for technologies that use radio waves to automatically identify people or objects. There are several methods of identification, but the most common is to store a serial number that identifies a person or object, and perhaps other information, on a microchip that is attached to an antenna (the chip and the antenna together are called an RFID transponder or an RFID tag). The antenna enables the chip to transmit the identification information to a reader. The reader converts the radio waves reflected back from the RFID tag into digital information that can then be passed on to computers that can make use of it.
An RFID system consists of a tag, which is made up of a microchip with an antenna, and an interrogator or reader with an antenna. The reader sends out electromagnetic waves. The tag antenna is tuned to receive these waves. A passive RFID tag draws power from field created by the reader and uses it to power the microchip’s circuits. The chip then modulates the waves that the tag sends back to the reader and the reader converts the new waves into digital data.
RFID uses the low-end of the electromagnetic spectrum. The waves coming from readers are no more dangerous than the waves coming to your car radio.
RFID is not necessarily “better” than bar codes. The two are different technologies and have different applications, which sometimes overlap. The big difference between the two is bar codes are line-of-sight technology. That is, a scanner has to “see” the bar code to read it, which means people usually have to orient the bar code towards a scanner for it to be read. Radio frequency identification, by contrast, doesn’t require line of sight. RFID tags can be read as long as they are within range of a reader. Bar codes have other shortcomings as well. If a label is ripped, soiled or falls off, there is no way to scan the item. And standard bar codes identify only the manufacturer and product, not the unique item. The bar code on one milk carton is the same as every other, making it impossible to identify which one might pass its expiration date first.
Probably not. Bar codes are inexpensive and effective for certain tasks. It is likely that RFID and bar codes will coexist for many years.